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1 Primer ejercicio

Si sabemos que ω⃗ es constante, con coordenadas ω⃗ = (ωx, ωy, ωz), calculamos el
vector v⃗ = ω⃗ × r⃗, considerando que r⃗ = (x, y, z)∣∣∣∣∣∣

î ĵ k̂
ωx ωy ωz

x y z

∣∣∣∣∣∣ = (zωy − yωz, xωz − zωx, yωx − xωy)

Se pide calcular la divergencia de dicho vector, así pues:

∇⃗ · v⃗ = 0

Esto ocurre porque ninguna de las componentes del vector dependen de sí
mismas. Al derivar, todo se convierte en constante, quedando anulado.

2 Segundo ejercicio

Sabemos, según la Segunda Ley de Newton, que:

F⃗ = m · a⃗
Por lo que la aceleración será:

a⃗(t) =
F⃗ (t)

m
=

500− 2 · 105 · t
0.002

m

s2

Para conseguir la velocidad integraremos la expresión y la evaluaremos donde
proceda:

v⃗(t) =

∫
a⃗ dt =

1

0.002

∫ (
500− 2 · 105 · t

)
dt =

1

0.002

(
500t− 105t2

)
Evaluado para el momento de salida, en t = 10−3 s:

v
(
10−3

)
=

1

0.002
·
(
500 · 10−3 − 105 · 10−6

)
=

1

0.002
· 2
5
= 200 m/s
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3 Tercer ejercicio

Considerando que m1 = 0.495 kg y m2 = 0.505 kg, sabemos que la masa m1 se
opone al movimiento del sistema. Por ende, la fuerza neta total será:

Fneta = F2 − F1 = (m2 −m1) · g

Por otro lado, sabemos también que la fuerza neta corresponde al sistema en su
conjunto. Considerando, según los datos, que la cuerda y polea tienen peso nulo:

Fs = (m1 +m2) · as
donde as es la aceleración del sistema. Despejando obtenemos su valor:

as =
Fneta

m1 +m2
= 0.0981

m

s2

A partir de esto, sabemos que el sistema está sujeto a un Movimiento Rectilíneo
Uniformemente Acelerado. Al no tener el dato de tiempo, utilizaremos la siguiente
igualdad para calcular la velocidad cuando se haya recorrido un metro:

v2 = v20 + 2a ·∆r

Despejando,

v =
√
2 · a ·∆r ≈ 0.443 m/s

4 Cuarto ejercicio

Calculamos los momentos lineales para cada partícula:

p⃗1 = 5 · (1, 1, 0) = (5, 5, 0) kg · m
s

p⃗2 = 2 · (0, 1, 2) = (0, 2, 4) kg · m
s

p⃗3 = 3 · (1,−2, 4) = (3,−6, 12) kg · m
s

Calculamos los momentos angulares como L⃗ = r⃗ × p⃗:

L⃗1 =

∣∣∣∣∣∣
î ĵ k̂
1 0 1
5 5 0

∣∣∣∣∣∣ = (−5, 5, 5)

L⃗2 =

∣∣∣∣∣∣
î ĵ k̂
−2 1 1
0 2 4

∣∣∣∣∣∣ = (2, 8,−4)
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L⃗3 =

∣∣∣∣∣∣
î ĵ k̂
0 1 1
3 −6 12

∣∣∣∣∣∣ = (18, 3,−3)

Por lo que el momento total será:

L⃗t =
∑
i

L⃗i = (15, 16,−2)

5 Quinto ejercicio

Si N⃗ es constante, podemos a�rmar que:

N⃗ =
dL⃗

dt

L⃗ =

∫
N⃗ · dt

considerando que el momento es constante sabemos que L⃗ = N⃗ · t. A los tres
segundos el momento angular será:

L⃗(3) = (9,−12, 6)

6 Sexto ejercicio

Aplicaremos las transformaciones relativistas para la contracción del espacio:

L = L0

√
1− v2

c20

Despejando para v:

v = c0 ·

√
1− L2

L2
0

= 29979245, 8
m

s

7 Séptimo ejercicio

La longitud no se contrae tan apenas, al volar el avión a muy poca velocidad con
respecto a la luz. Aplicando las transformaciones relativistas:

L = L0

√
1− v2

c20
≈ 100 m

La variación es imperceptible para una calculadora estándar.
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8 Octavo ejercicio

Sabemos que un oscilador armónico cumple la siguiente función de posición con
respecto a tiempo:

x(t) = A cos (ωt∓ ϕ)

Derivando dicha expresión llegaremos a la velocidad, que resulta:

v(t) = Aω cos (ωt∓ ϕ)

La velocidad máxima se alcanzará cuando el coseno sea 1 (su máximo). Por
ende, será v = Aω.

Por otro lado, la aceleración se expresa como:

a(t) = −Aω2 cos (ωt∓ ϕ)

En el extremo, el coseno es 1, al igual que en la posición. Así, la aceleración en
el punto será a = −Aω2.

Por último considerando la relación del periodo con la masa y la constante
elástica:

T = 2π

√
m

k

despejamos k:

k =
4π2m

T 2
= 3.158

N

m

9 Noveno ejercicio

Calculamos en primer lugar la gravedad lunar partiendo de la Ley de la Gravitación

Universal :

|⃗g| = gl =
G ·M
r2

= 1.75
m

s2

Aplicando las ecuaciones del movimiento en caída libre, la posición �nal del
objeto pasado un segundo será:

r⃗f =
1

2
glt

2 = 0.873 m

Por otro lado, sabemos que el periodo de un péndulo viene de�nido por:

T = 2π

√
L

g

donde L es la longitud del péndulo y g la gravedad. Dividiendo los periodos de
Tierra y Luna entre sí, obtenemos la relación que sigue:
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TT

TL
=

√
gL
gT

de donde obtenemos que

TL =
TT√
gL
gT

= 2.37 s

10 Décimo ejercicio

Suponiendo que la esfera se encuentra sobre el plano XY en z = 0, proponemos
coordenadas esféricas: 

x = r sin θ cosϕ

y = r sin θ sinϕ

z = r cos θ

El centro de masas queda calculado como:

z =
1

V

∫
z dV

donde el elemento de volumen deberá respetar las coordenadas y V es el volumen
de la semiesfera, V = 2

3πR
3. Cambiando a esféricas:

z =
1

V

∫
r cos θ · r2 sin θ dr dθ dϕ

Dividimos la integral con los límites de la semiesfera:

z =
1

V

∫ 2π

0

∫ π/2

0

∫ R

0

r cos θ · r2 sin θ dr dθ dϕ

z =
1

V

∫ 2π

0

∫ π/2

0

R4

4
cos θ · sin θ dθ dϕ

z =
1

V

∫ 2π

0

R4

8
dϕ =

1

V

πR4

4

sustituyendo el volumen:

z =
3

8
R

esto es, el centro de masas queda situado en la posición de 3/8 del radio de la
semiesfera.
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