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Ejercicio 1
Se encuentra la resolución en este enlace: https://trinket.io/glowscript/70b35cd77599

Ejercicio 2

Caso elástico

Para el caso elástico, en la animación se ve como la bola roja rebota, perdiendo 

ligera velocidad, que gana la otra partícula. La apreciación es casi imperceptible por la 

diferencia de masas entre las partículas.

Caso inelástico

En este caso, la bola roja no puede mover a la azul, pero al no conservarse la energía 

cinética, no rebota la bola roja, sino que se incrusta en la azul, quedando después 

inmóviles las dos esferas.

Ejercicio 3
En este caso la bola roja incrementa su posición inicial vertical pero no lleva la misma 

dirección que la otra esfera. Sin embargo, al colisionar no se aprecia diferencia con la 

colisión anterior. Modificando las masas, queda claro que el modelo no es realista, al no 

modificar la bola B su posición vertical.

Ejercicio 4
La función norm() retorna un vector unitario en la dirección y sentido del que entre como 

argumento. En este caso, hablamos de el vector rrel. Por otro lado el método .dot() 

computa el producto escalar entre el momento del centro de masas de cada esfera y el 

unitario de la distancia relativa. Cuando el choque es elástico vemos que al momento 

lineal se le restan 2 sustraendos. Esto depende del coeficiente de restitución. El sus

traendo no es más que un vector en la dirección y sentido de rrel con módulo igual a la 

proyección en el eje que une los centros del momento lineal de la partícula.

Ejercicio 5
Se puede deducir esto por que en el código el 2 queda sustituido por la expresión (1 + e), 

donde e es el coeficiente de restitución. Como en un choque inelástico e = 1, entonces 

se puede escribir un factor 2, tal y como vemos en las mencionadas líneas.
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Por otro lado, en el histograma vemos la distribución de Maxwell-Boltzmann. Sabemos 

que esta distribución corresponde a la función dependiente de la velocidad:

𝑓(𝑣) = 4𝜋( 𝑚
2𝜋𝑘𝑇

)
3
2
⋅ 𝑣2𝑒−𝑚𝑣2

2𝑘𝑇

Donde 𝑇  es la temperatura absoluta y 𝑘 es la constante de Boltzmann. Es, entonces, 

comprobable que cuanto más aumente la temperatura, menos pronunciada será la 

curva. En otras palabras, a mayor temperatura, el máximo de partículas que alcanzan 

una velocidad determinada se alcanza a una velocidad más alta.

Figura 1: Ejemplo de distribución de Maxwell-Boltzmann a diferentes velocidades. 

Nótese la dependencia del máximo con la velocidad.
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